Why does music training increase intelligence?

We know that music training causes intelligence to increase, but why? In this post I 1) propose a new theory, and 2) falsify it immediately. Given that this particular combination of activities is unpublishable in any academic journal, I invite you to read the whole story here (in under 500 words).

1) Proposing the ISAML

Incredible but true, music lessons improve the one thing that determines why people who are good on one task tend to be better on another task as well: IQ (Schellenberg, 2004; Kaviani et al., 2013; see coverage in previous blog post). Curiously, I have never seen an explanation for why music training would benefit intelligence.

I propose the Improved Sustained Attention through Music Lessons hypothesis (ISAML). The ISAML hypothesis claims that all tasks related to intelligence are dependent to some degree on people attending to them continuously. This ability is called sustained attention. A lapse of attention, caused by insufficient sustained attention, leads to suboptimal answers on IQ tests. Given that music is related to the structuring of attention (Boltz & Jones, 1989) and removes attentional ‘gaps’ (Olivers & Nieuwenhuis, 2005; see coverage in previous blog post), music training might help in attentional control and, thus, in increasing sustained attention. This in turn might have a positive impact on intelligence, see boxes and arrows in Figure 1.


Figure 1. The Improved Sustained Attention through Music Lessons hypothesis (ISAML) in a nutshell. Arrows represent positive associations.

The ISAML does not predict that intelligence is the same as sustained attention. Instead, it predicts that:

a) music training increases sustained attention

b) sustained attention is associated with intelligence

c) music training increases intelligence

2) Evaluating the ISAML

Prediction c is already supported, see above. Does anyone know something about prediction b? Here, I shall evaluate prediction a: does music training increase sustained attention? So far, the evidence looks inconclusive (Carey et al., 2015). Therefore, I will turn to a data set of my own which I gathered in a project together with Suzanne R. Jongman (Kunert & Jongman, in press).

We used a standard test of sustained attention: the digit discrimination test (Jongman et al., 2015). Participants had the mind-boggingly boring task of clicking a button every time they saw a zero while watching one single digit after another on the screen for ten minutes. A low sustained attention ability is thought to be reflected by worse performance (higher reaction time to the digit zero) at the end of the testing session compared to the beginning, or by overall high reaction times.

Unfortunately for the ISAML, it turns out that there is absolutely no relation between musical training and sustained attention. As you can see in Figure 2A, the reaction time (logged) decrement between the first and last half of reactions to zeroes is not related to musical training years [Pearson r = .03, N = 362, p = .61, 95% CI = [-.076; .129], JZS BF01 with default prior = 7.59; Spearman rho = .05]. Same for mean reaction time (logged), see Figure 2B [Pearson r = .02, N = 362, p = .74, 95% CI = [-0.861; 0.120], JZS BF01 = 8.181; Spearman rho = 0.03].


Figure 2. The correlation between two different measures of sustained attention (vertical axes) and musical training (horizontal axes) in a sample of 362 participants. High values on vertical axes represent low sustained attention, i.e. the ISAML predicts a negative correlation coefficient. Neither correlation is statistically significant. Light grey robust regression lines show an iterated least squares regression which reduces the influence of unusual data points.

3) Conclusion

Why on earth is musical training related to IQ increases? I have no idea. The ISAML is not a good account for the intelligence boost provided by music lessons.

— — —

Carey, D., Rosen, S., Krishnan, S., Pearce, M., Shepherd, A., Aydelott, J., & Dick, F. (2015). Generality and specificity in the effects of musical expertise on perception and cognition Cognition, 137, 81-105 DOI: 10.1016/j.cognition.2014.12.005

Jongman, S., Meyer, A., & Roelofs, A. (2015). The Role of Sustained Attention in the Production of Conjoined Noun Phrases: An Individual Differences Study PLOS ONE, 10 (9) DOI: 10.1371/journal.pone.0137557

Jones, M., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96 (3), 459-491 DOI: 10.1037//0033-295X.96.3.459

Kaviani, H., Mirbaha, H., Pournaseh, M., & Sagan, O. (2013). Can music lessons increase the performance of preschool children in IQ tests? Cognitive Processing, 15 (1), 77-84 DOI: 10.1007/s10339-013-0574-0

Kunert R, & Jongman SR (2017). Entrainment to an auditory signal: Is attention involved? Journal of experimental psychology. General, 146 (1), 77-88 PMID: 28054814

Olivers, C., & Nieuwenhuis, S. (2005). The Beneficial Effect of Concurrent Task-Irrelevant Mental Activity on Temporal Attention Psychological Science, 16 (4), 265-269 DOI: 10.1111/j.0956-7976.2005.01526.x

Glenn Schellenberg, E. (2004). Music Lessons Enhance IQ Psychological Science, 15 (8), 511-514 DOI: 10.1111/j.0956-7976.2004.00711.x

— — —

Why does humanity get smarter and smarter?

Intelligence tests have to be adjusted all the time because people score higher and higher. If the average human of today went 105 years back in time, s/he would score 130, be considered as gifted, and join clubs for highly intelligent people. How can that be?

IQ_increase_base_graphic_v.2_EnglishThe IQ growth

The picture above shows the development of humanity’s intelligence between 1909 and 2013. According to IQ-scores people got smarter and smarter. During the last 105 years, people’s scores increased by as much as 30 IQ-points. That is equivalent to the difference between intellectual disability and normal intelligence. Ever since the discovery of this effect by James Flynn, the underlying reason has been hotly debated. A new analysis combines all available studies into one overall picture in order to find answers.

Jakob Pietschnig and Martin Voracek included all available data pertaining to IQ increases from one generation to another: nearly 4 million test takers in 105 years. They found that IQ scores sometimes increased faster and sometimes more slowly. Check the difference between the 1920s and WWII in the figure above. Moreover, different aspects of intelligence change at different speeds. So-called crystallized intelligence (knowledge about facts) increased only at a rate of 0.2 points per year. So-called fluid intelligence (abstract problem solving), on the other hand, increased much faster at 0.4 points per year.

Five reasons for IQ growth

Five reasons appear to come together to explain this phenomenon:

1) better schooling: IQ growth is stronger in adults than in children, probably because adults stay longer and longer in school.

2) more experience with multiple choice tests: since the 1990s the multiple choice format has become common in schools and universities. Modern test takers are no longer put off by this way of asking questions in IQ tests and might resort to smart guessing.

3) less malnutrition: the slow IQ growth during the world wars might have something to do with a lack of nutrients and energy which the brain needs

4) better health care: the less sick you are, the more your brain can develop optimally

5) less lead poisoning: since the 1970s lead was phased out in paint and gasoline, removing an obstacle for healthy neural development

 Am I really smarter than my father?

According to the Flynn effect, my generation is 8 IQ-points smarter than that of my parents. But this only relates to performance on IQ tests. I somehow doubt that more practical, less abstract, areas show the same effect. Perhaps practical intelligence is just more difficult to measure. It is possible that we have not really become more intelligent thinkers but instead more abstract thinkers.

— — —
Pietschnig J, & Voracek M (2015). One Century of Global IQ Gains: A Formal Meta-Analysis of the Flynn Effect (1909-2013). Perspectives on psychological science : a journal of the Association for Psychological Science, 10 (3), 282-306 PMID: 25987509

— — —

Figure: self made, based on data in Figure 1 in Pietschnig & Voracek (2015, p. 285)

Memory training boosts IQ

Is the IQ set in stone once we hit adulthood? ‘Yes it is’ used to be the received wisdom. A new meta-analysis challenges this view and gives hope to all of us who feel that mother nature should have endowed us with more IQ points. But is the training worth it?

a perfectly realistic depiction of intelligence training

a perfectly realistic depiction of intelligence training

Intelligence increases in adults

I have previously blogged about intelligence training with music (here). Music lessons increase your intelligence by round about 3 IQ points. But this has only been shown to work in children. A new paper shows that adults can also improve their IQ. Jacky Au and colleagues make this point based on one big analysis incorporating 20 publications with over 1000 participans. People did a working memory exercice, i.e. they trained the bit of their mind that holds information online. How? They did the so-called n-back task over and over and over again. Rather than explain the n-back task here, I just invite you to watch the video.

Increasing memory, increasing intelligence

Of course you cannot change your intelligence if you only do the task once. However, once you do this task several times a week over several weeks, your performance should increase, which shows that you trained your working memory. However, you will also improve on seemingly unrelated IQ tests. The meta-analysis takes this as a sign that actual intelligence increases result from n-back training. Working memory training goes beyond improvements on working memory tests alone.

The catch

So, the training is effective. It increases your intelligence by three to four IQ points. But is it efficient? You have to train for around half an hour daily, over a month. Such a training regime will have a considerable impact on your life. Are three to four IQ points enough to compensate for that?

— — —

Au, J., Sheehan, E., Tsai, N., Duncan, G., Buschkuehl, M., & Jaeggi, S. (2014). Improving fluid intelligence with training on working memory: a meta-analysis Psychonomic Bulletin & Review DOI: 10.3758/s13423-014-0699-x

— — —


The 10,000-Hour rule is nonsense

Have you heard of Malcom Gladwell’s 10,000-hour rule? The key to success in any field is practice, and not just a little. A new publication in the journal Psychological Science had a good look at all the evidence and concludes that this rule is nonsense. No Einstein in you, I am afraid.

Albert Einstein, by Doris Ulmann.jpg

Did he just practice a lot?

The authors of the new publication wanted to look at all major areas of expertise where the relationship between practice and performance had been investigated: music, games, sports, professions, and education. They accumulated all the 88 scientific articles that are available at this point and performed one big analysis on the accumulated data of 11,135 participants. A meta-analysis with a huge sample.

The take-home number is 12%. The amount of practice that you do only explains 12% of your performance in a given task. From the 10,000-Hour rule I expected at least 50%. And this low number of 12% is not due to fishy methods in some low-quality articles that were included. Actually, the better the method to assess the amount of practice the lower the apparent effect of practice. The same goes for the method to assess performance on the practiced task.

However, one should differentiate between different kinds of activities. Practice can have a bigger effect. For example, if the context in which the task is performed is very stable (e.g., running) 24% of performance is explained by practice. Unstable contexts (e.g., handling an aviation emergency) push this down to 4% . The area of expertise also made a difference:

  • games: 26%
  • music: 21%
  • sports: 18%
  • education: 4%
  • professions: 1%

In other words the 10,000-Hour rule is nonsense. Stop believing in it. Sure, practice is important. But other factors (age? intelligence? talent?) appear to play a bigger role.

Personally, I have decided not to become a chess master by practicing chess for 10,000 hours or more. I rather focus on activities that play to my strengths. Let’s hope that blogging is one of them.

Macnamara, B.N., Hambrick, D.Z., & Oswald, F.L. (2014). Deliberate Practice and Performance in Music, Games, Sports, Education, and Professions: A Meta-Analysis Psychological Science DOI: 10.1037/e633262013-474





Albert Einstein, by Doris Ulmann” by Doris Ulmann (1882 – 1934) – Library of Congress, Prints & Photographs Division, [reproduction number LC-USZC4-4940]. Licensed under Public domain via Wikimedia Commons.

Music training boosts IQ

There are more and more brain training companies popping up which promise the same deal: improved intelligence. While there are doubts about their results, another sort of brain training has existed since the beginning of humanity: music. The evidence for its effectiveness is surprisingly strong.


Music Lesson, 1936

Brain training in the 1930’s.

Over the years, researchers have noticed that people who have taken music lessons are better on a wide range of seemingly unconnected tasks. Just look at this impressive list:


Mathematics (across many different tasks; Vaughn, 2000)
Reading (understanding a written text; Corrigall & Trainor, 2011)
Simon task (quickly overcoming an easy, intuitive response in order to do a task right; Bialystok & DePape, 2009)
Digit Span (repeating a long list of random digits; Schellenberg, 2011)
Simple Reaction Time (pressing a button as soon as possible; Hughes & Franz, 2007)


None of these tasks has anything to do with music classes. What is it that makes music lessons correlate with them? It could just be the socio-economic background: the more well-off or well-educated the parents the better the education of their children, including their music education (e.g., Corrigall et al., 2013). However, one can adjust for these differences with statistical tricks and the general picture is that the family background cannot fully explain the advantage musically trained children have on all sorts of tasks (e.g., Corrigall & Trainor, 2011; Schellenberg, 2011). If not family background, then what is underlying the music children advantage?


Füssli: Liegende Nackte und Klavierspielerin

Brain training in the 18th century. I am referring to the left lady.

Another contender is a common factor making some people good on all sorts of seemingly unrelated tasks and other people bad on nearly any task. This factor is called ‘g’ or general intelligence. An indeed, people who have enjoyed a musical education score higher on intelligence tests than people who did not. This has been shown across the globe: North America (Schellenberg, 2011), Europe (Roden et al., 2013), Asia (Ho et al., 2003†). The consistency across age groups is also impressive: 6-11 year olds (Schellenberg, 2006), 9-12 year olds (Schellenberg, 2011), 16-25 year-olds (Schellenberg, 2006). So, what holds these tasks and music education together is general intelligence. But that just opens up the next question: what causes this association between general intelligence and music lessons?
Music lessons cause higher intelligence
The most exciting possibility would be if music lessons actually caused higher intelligence. In order to make such a claim one needs to take a bunch of people and randomly assign them to either music lessons or some comparable activity. This random assignment ensures that any previous differences between music and non-music children will be equally distributed across groups. Random chance assignment at the beginning of the experiment ensures that any group differences at the end must be due to the whether children took music lessons during the experiment or not. Glenn Schellenberg did exactly this experiment with over 100 six-year-olds in Toronto (2004). Over a period of one year the children who learned to play the keyboard or to sing increased their IQ by 7 points. Children who were given drama lessons instead or simply no extra-curricular activity only increased by 4 points (likely because they started school in that year). A similar study which recently came out of Iran by Kaviani and colleagues (2013) replicates this finding. After only three months of group music lessons, the six-year-old music children increased their IQ by five points while children who were not assigned to music lessons only improved by one point. Across studies music lessons boost IQ.
It is worth reiterating how impressive this effect is. It has been found across three different music teaching approaches (standard keyboard lessons, Kodály voice lessons, Orff method). It has been replicated with two different sorts of intelligence tests (Wechsler and Stanford-Binet) as well as most of their subscales. It even came up despite the cultural differences between testing countries (Canada, Iran).
The take-home message couldn’t be any clearer. Music lessons are associated with intelligence not just because clever or well-off people take music lessons. A musical education itself makes you better across many tasks generally and on IQ tests specifically. No other ‘brain training’ has such a strong evidence base. Music is the best brain training we have.


Eros and a youth

Ancient Greek brain training. I am referring to the gentleman on the right.


Bialystok E, & Depape AM (2009). Musical expertise, bilingualism, and executive functioning. Journal of experimental psychology. Human perception and performance, 35 (2), 565-74 PMID: 19331508

Corrigall KA, Schellenberg EG, & Misura NM (2013). Music training, cognition, and personality. Frontiers in psychology, 4 PMID: 23641225

Corrigall, KA, & Trainor, LJ (2011). Associations Between Length of Music Training and Reading Skills in Children Music Perception: An Interdisciplinary Journal,, 29 (2), 147-155 DOI: 10.1525/mp.2011.29.2.147

Ho YC, Cheung MC, & Chan AS (2003). Music training improves verbal but not visual memory: cross-sectional and longitudinal explorations in children. Neuropsychology, 17 (3), 439-50 PMID: 12959510

Hughes CM, & Franz EA (2007). Experience-dependent effects in unimanual and bimanual reaction time tasks in musicians. Journal of motor behavior, 39 (1), 3-8 PMID: 17251166

Kaviani H, Mirbaha H, Pournaseh M, & Sagan O (2013). Can music lessons increase the performance of preschool children in IQ tests? Cognitive processing PMID: 23793255

Roden, I, Grube, D, Bongard, S, & Kreutz, G (2013). Does music training enhance working memory performance? Findings from a quasi-experimental longitudinal study Psychology of Music DOI: 10.1177/0305735612471239

Schellenberg EG (2004). Music lessons enhance IQ. Psychological science, 15 (8), 511-4 PMID: 15270994

Schellenberg, EG (2006). Long-Term Positive Associations Between Music Lessons and IQ Journal of Educational Psychology, 98 (2), 457-468 DOI: 10.1037/0022-0663.98.2.457

Schellenberg EG (2011). Examining the association between music lessons and intelligence. British journal of psychology, 102 (3), 283-302 PMID: 21751987

Vaughn, K (2000). Music and Mathematics: Modest Support for the Oft-Claimed Relationship Journal of Aesthetic Education,, 34 (3/4), 149-166 DOI: 10.2307/3333641



† Effect only marginally significant (0.05<p<0.1)



1) By Franklin D. Roosevelt Presidential Library and Museum [Public domain], via Wikimedia Commons

2) By Johann Heinrich Füssli: Liegende Nackte und Klavierspielerin, via Wikimedia Commons

3) attributed to the Penthesilea Painter, between circa 460 and circa 450 BC, via Wikimedia Commons