Language – Cognition Interaction

Do music and language share brain resources?

When you listen to some music and when you read a book, does your brain use the same resources? This question goes to the heart of how the brain is organised – does it make a difference between cognitive domains like music and language? In a new commentary I highlight a successful approach which helps to answer this question.

On some isolated island in academia, the tree of knowledge has the form of a brain.

How do we read? What is the brain doing in this picture?

When reading the following sentence, check carefully when you are surprised at what you are reading:

After | the trial | the attorney | advised | the defendant | was | likely | to commit | more crimes.

I bet it was on the segment was. You probably thought that the defendant was advised, rather than that someone else was advised about the defendant. Once you read the word was you need to reinterpret what you have just read. In 2009 Bob Slevc and colleagues found out that background music can change your reading of this kind of sentences. If you hear a chord which is harmonically unexpected, you have even more trouble with the reinterpretation of the sentence on reading was.

Why does music influence language?

Why would an unexpected chord be problematic for reading surprising sentences? The most straight-forward explanation is that unexpected chords are odd. So they draw your attention. To test this simple explanation, Slevc tried out an unexpected instrument playing the chord in a harmonically expected way. No effect on reading. Apparently, not just any odd chord changes your reading. The musical oddity has to stem from the harmony of the chord. Why this is the case, is a matter of debate between scientists. What this experiment makes clear though, is that music can influence language via shared resources which have something to do with harmony processing.

Why ignore the fact that music influences language?

None of this was mention in a recent review by Isabelle Peretz and colleagues on this topic. They looked at where in the brain music and language show activations, as revealed in MRI brain scanners. This is just one way to find out whether music and language share brain resources. They concluded that ‘the question of overlap between music and speech processing must still be considered as an open question’. Peretz call for ‘converging evidence from several methodologies’ but fail to mention the evidence from non-MRI methodologies.1

Sure one has to focus on something, but it annoys me that people tend focus on methods (especially fancy expensive methods like MRI scanners), rather than answers (especially answers from elegant but cheap research into human behaviour like reading). So I decided to write a commentary together with Bob Slevc. We list no less than ten studies which used a similar approach to the one outlined above. Why ignore these results?

If only Peretz and colleagues had truly looked at ‘converging evidence from several methodologies’. They would have asked themselves why music sometimes influences language and why it sometimes does not. The debate is in full swing and already beyond the previous question of whether music and language share brain resources. Instead, researchers ask what kind of resources are shared.

So, yes, music and language appear to share some brain resources. Perhaps this is not easily visible in MRI brain scanners. Looking at how people read with chord sequences played in the background is how one can show this.

— — —
Kunert, R., & Slevc, L.R. (2015). A commentary on “Neural overlap in processing music and speech” (Peretz et al., 2015) Frontiers in Human Neuroscience : doi: 10.3389/fnhum.2015.00330

Peretz I, Vuvan D, Lagrois MÉ, & Armony JL (2015). Neural overlap in processing music and speech. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 370 (1664) PMID: 25646513

Slevc LR, Rosenberg JC, & Patel AD (2009). Making psycholinguistics musical: self-paced reading time evidence for shared processing of linguistic and musical syntax. Psychonomic bulletin & review, 16 (2), 374-81 PMID: 19293110
— — —

1 Except for one ECoG study.

DISCLAIMER: The views expressed in this blog post are not necessarily shared by Bob Slevc.

Advertisements

Is it safe to talk while driving? – Partly depends on what you talk about.

World Health Organization reports about road safety are mind boggling: about 1.2 million people die on the world’s roads every year. For people of my age (15 to 29 year olds) it is the leading cause of death.

A rather recent addition to laws designed to reduce these numbers was the adoption of compulsory hands-free devices for mobile phones. Their safety value is easy to understand. When you look at a mobile phone display you cannot simultaneously look at the road. Similarly, using your hands for typing and using them for steering are at least partly incompatible actions.
mobile phone use while driving

How mobile phone use impairs sight and hands.

From a psychological point of view the current law tries to ensure that visual input channels (eyes) and motor output channels (hands) remain undisturbed. But what about the brain areas which control these channels?
This is the question recently investigated by Bergen from UC San Diego and colleagues. They put undergraduates in a driving simulator giving the impression of a motorway with steady traffic and a car in front of the driver breaking from time to time. Simultaneously, the driver had to judge simple true/false statements from the motor domain (e.g., “To open a jar, you turn the lid counterclockwise.”), the visual domain (e.g., “The letters on a stop sign are white.”), or the abstract domain (e.g., “The capital of North Dakota is Bismarck.”). As a baseline condition, people were just asked to say “true” or “false” several times.
Why choose such questions? There is both behavioural and brain-imaging evidence that language comprehension involves the simulation of what was said. This set of findings is often summarised as embodied cognition and its take-home message is something like this: in order to understand it, you mentally do it. For example, to answer a motor question, you use your brain areas doing motor control and make them simulate what it would be like to open a jar. Based on the outcome of this simulation you answer the question.
So, will visual or motor questions affect driving differently than abstract questions because the former engage the same brain areas as those needed for driving while the latter don’t? The alternative would be that asking anything distracts because general attention gets pulled away from driving.
The results go both ways. First, one measure was affected by the true/false statements but not by which kinds: quickly breaking when the car in front breaks. The time it took to do so was longer if any sort of question was asked compared to baseline. This suggests that domain general mechanisms were interfered with through language, e.g., attention.
Liza minelli driving

Was she a safe driver? May depend on whether she talked and if so about what.

Second, one measure was affected by what kind of statements had to be judged:generally holding a safe distance to other cars. This distance was greater if visual questions were asked compared to abstract questions and compared to baseline. A similar, albeit not as clear, pattern emerged for motor questions. It looks as if participants were so distracted by these kinds of questions that they fell behind their optimal driving distance. This suggests that a task such as keeping a safe driving distance which requires visual working memory (compare ideal distance to actual distance) and corrective motor responses (bring ideal and actual distances closer together) is influenced by language comprehension through mental simulation.
On the one hand, the scientific implications are quite straight forward. Bergen and colleague’s results suggest that those low level perception and action control areas which are needed for quick reactions are not what embodied cognition is about. Instead it seems like embodied cognition happens in higher perceptual and motor planning areas. Furthermore, the whole embodied cognition idea gets quite a boost from a conceptual replication under relatively realistic conditions.
On the other hand, the practical implications are somewhat controversial. Because talking in general impairs quick reactions by the driver, even hands-free devices pose a risk. This danger is compounded by talking about abstract topics since the driving distance is reduced compared to visual topics.
The authors refrain from saying that any sort of conversation should be prohibited. Passengers share perceptual experiences with the driver and can adjust their conversations to the dangerousness of the situation. Mobile phone contacts can’t do this. But what if you want to be really really safe? Well, cut your own risk of dying and take public transport. There you can chat and cut your death risk by 90% (bus) or even 95% (train or flight) compared to car travel (EU numbers).
London bus

A safe way to travel.

———————————————-

Bergen, B., Medeiros-Ward, N., Wheeler, K., Drews, F., & Strayer, D. (2012). The Crosstalk Hypothesis: Why Language Interferes With Driving. Journal of experimental psychology. General PMID: 22612769

———————————————

images:

1) By Ed Brown as Edbrown05 (Own work) [CC-BY-SA-2.5 (www.creativecommons.org/licenses/by-sa/2.5)], via Wikimedia Commons

2) By Alan Light (Flickr) [CC-BY-2.0 (http://creativecommons.org/licenses/by/2.0)%5D, via Wikimedia Commons

3) By Original author was User:Kameragrl at Wikitravel Shared, transferred to Commons by User:Oxyman (http://wikitravel.org/shared/Image:London_Bus.jpg) [CC-BY-SA-1.0 (http://creativecommons.org/licenses/by-sa/1.0)%5D, via Wikimedia Commons

ResearchBlogging.org

Thought Metaphors

Is crime alive? Where is musical pitch?
Neither question makes any sense.
And nonetheless, one can answer them. Crime can be a beast haunting local neighbourhoods and it must be eradicated – a description suggesting it is well and alive. And musical pitch is high or low.
Of course, these are all just metaphors useful for quickly talking about things without having to stop for lengthy definitions. However, they are not only linguistic short cuts. They are also mental short cuts – or opportunities for manipulation, if you prefer a more racy description. Last year, a bunch of studies showed examples of how far one can go with this.
crime

A metaphorical breeding program.

Thibodeau and Boroditsky (2011) contrasted two common Western metaphors related to crime: the crime as a beast (preying on a town, lurking in the neighbourhood) and crime as a virus (infecting a town, plaguing the neighbourhood). They ‘activated’ these metaphors by using these words alongside fictional crime statistics of an unknown town. When participants were asked what to do about the town’s crime problem, those in the beast-condition were more likely to suggest law enforcement actions (capture, enforce, punish) than those in the virus-condition who often opted for reform-measures (diagnose, treat, inoculate).
Thus, a linguistic short-cut affected how people reacted to a realistic real world problem in the realm of social policy. And the effects are big. As one might expect, the same researchers also found political and gender differences (US Republicans as well as men tend to be more on the enforcement side than US Democrats/ Independents and women). Simply mentioning a metaphor was twice as powerful in shaping opinion than any of these variables.
high pitch

A literally high pitch.

In a different set of studies, even something as basic as the height of a tone was shown to be metaphorical. Dolscheid and colleagues (2011) showed that when a tone is presented with an image of height (basically a vertical line crossed by another line at a high or low point) this influences Westerners’ pitch repetition – as would be expected by the pitch-as-height metaphor. When Dutch participants sang a tone paired with a high line, they tended to sing higher. An image of thickness (a thick or thin line) was without influence. The reverse was the case for Farsi speakers even though they lived in the same country. In Farsi, low tones are called thick and high tones are called thin. In a second step, the research team trained people for only 20 minutes with the thickness metaphor – without them knowing. Afterwards, Dutch people performed similarly to Farsi speakers who had known it all their lives.
The wider point is one I have made before: Language is not just for talking, it is also a window into the Mind. However, the metaphor research goes further by also showing how easily this window gives access to the Mind, how easily we can be manipulated. Something as important as how to address crime can be influenced by a recently encountered metaphor. The same applies to something as basic as singing back a tone.
And don’t say they can be spotted easily. Or did you notice the race metaphor written black on white at the beginning of this post?
Dolscheid, S., Shayan, S., Majid, A., & Casasanto, D. (2011). The Thickness of Musical Pitch: Psychophysical evidence for the Whorfian hypothesis. Proceedings of the 33rd annual meeting of the Cognitive Science Society, Boston, MA.
Thibodeau, P.H., & Boroditsky, L. (2011). Metaphors We Think With: The Role of Metaphor in Reasoning. Plos One, 6 (2), e16782. doi:10.1371/journal.pone.0016782

Gendered Language, Gendered Mind

What is so female about ships to call them she (LINK)? What is so neuter about children to call them it (LINK)? Now imagine that entire languages – like German, Spanish and French – are full of these arbitrary gender assignments, not allowing any genderless nouns. This has a profound effect on the way the mind works. A couple of articles published last year on the grammatical gender of nouns in different languages nicely illustrate this point.
To native speakers of gendered languages – i.e. languages whose nouns are all masculine, feminine or perhaps neuter – their language’s gender system usually appears obvious. I vividly remember sitting in France in a Philosophy class and the teacher elaborated on the female gender of life (la vie). According to her, life could only ever be feminine for some forgotten reason. When a class mate pointed out that life was neuter in German and, that, therefore, her reasoning was flawed she turned to me as a native German speaker. I could only agree with the comment and see her theory fall apart in real time (btw, life can even be masculine as for example in Bulgarian or Hebrew). This is the first experience which I can remember of a native speaker applying the mostly arbitrary grammatical gender system beyond the domain of language.
Recent research has found more examples of grammatical gender influencing how language users think about completely asexual things. In a very small experiment, an Israeli friend of mine (Rony Halevy) asked Hebrew speakers to dress up cutlery and other objects and found more feminine dresses on grammatically female items and vice versa for male items (see picture). Dutch controls, who do not distinguish between male and female grammatical gender, did not show a similar effect. Still, one may argue that the reference to gender was in the task already. Similarly, language based tasks in this field could be said to only reveal an effect of grammatical gender on other linguistic processes. So, can language really influence the mind in general?
Rony Halevy
Hebrew is a gendered language and participants tend to dress up simple objects such as a spoon or a fork according to their grammatical gender. The Dutch gender system does not refer to male and female and does not show the same effect. Data based on student project by Rony Halevy.
Cubelli et al. (2011) used a categorisation task in which participants had to quickly judge whether two pictures showed objects belonging to the same category or not. Judgements were faster if the objects’ grammatical gender matched. The authors interpreted this as showing that people access the words related to the pictures even when this is not required for the task.
Even outside the laboratory the effect can be shown. Sampling images from a big online art database, Segel and Boroditsky (2011) looked at all the gendered depictions of naturally asexual entities like love, justice, or time. Depicted gender agreed with grammatical gender in 78% of the cases. The effect was replicable for Italian, French and German. On top of that, it even held when only looking at those entities whose grammatical genders are conflicting in the studied languages.
It is worth reiterating that the aforementioned behaviours were completely non-linguistic. The grammatical gender system is just a set of rules for how words change when combined. The fact that people draw on these purely linguistic rules to perform unrelated tasks shows quite powerfully what a central role language plays in our minds.
But the effect may go further than that. In English, natural gender must be included in personal pronouns (he/she). Admittedly, there are exceptions (child – it) but they are rare. In Chinese, there is no such requirement. Personal pronouns can mark gender (written forms of ta) or not (spoken ta). Chen and Su (2011, Experiment 2) presented English or Chinese participants with written English or Chinese sentences which included gendered personal pronouns. Participants were asked to match each sentence to one of two pictures, each showing a person of a different gender. English speaking participants were faster and more accurate than Chinese speakers on these judgements. It’s as if English speakers are better trained in thinking about natural gender because English makes such thinking compulsory. Chinese participants, on the other hand, can produce pronouns without thinking of natural gender and, thus, have this information less readily available for their judgements.
One may argue that the effect relies on people of different native tongues showing different behaviours. These people probably differ in many ways other than their native language. Wider cultural differences could be invoked. Still, given that the effect holds for German, French, Italian, Spanish and Chinese, the most straightforward explanation indeed appears to be their language background. A way of overcoming the confounding influence of cultural upbringing may be to contrast second language learners of the same native language who learn different second languages.
Despite these short comings, the influence of the gender status of a language on the mind of its users is clearly measurable. This illustrates quite nicely that thought is influenced by what you must say – rather than by what you can say. This highlights that language is not an isolated skill but instead a central part of how our minds function. Studying language use is important – not just for the sake of language.
Chen, J-Y., & Su, J-J. (2011). Differential Sensitivity to the Gender of a Person by English and Chinese Speakers. Journal of Psycholinguist Research, 40, 195–203. doi: 10.1007/s10936-010-9164-9
Cubelli, R., Paolieri, D., Lotto, L., & Job, R. (2011). The Effect of Grammatical Gender on Object Categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 449–460. doi: 10.1037/a0021965
Segel, E., & Boroditsky, L. (2011). Grammar in art. Frontiers in Psychology, 1,1. doi: 10.3389/fpsyg.2010.00244