Why ear plugs are great for clubbing and concerts

I enjoy clubbing and pop/rock concerts exclusively with my ear plugs in. Does that mean I miss out? No, I enjoy the music exactly as it is meant to be.


Picture by Melianis at fi.wikipedia (CC BY 2.5)

Since 2004 the urban dictionary includes the term ‘deaf rave’ to describe a ‘rave, or party, organised by deaf people for deaf people, though hearing people are invited also’. Deaf people at a rave? Do they come for the flashy lights? No, the phenomenon behind deaf people’s enjoyment of raves is at the heart of why I wear ear plugs when going clubbing.

Deaf people enjoy loud music – i.e. strong air vibrations – through their skin – an organ signalling vibrating input. Hearing people’s skin is no different but we often fail to notice our skin-hearing because ear-hearing trumps it, given its greater sensitivity. However, once the volume is cranked up, as at many night clubs and concerts, the skin can do remarkable things.

For example, ordinary people can distinguish instruments whose sounds they can only feel on their backs (even deaf people can do this) (Russo et al., 2012). Moreover, ear-hearing can be affected by skin-hearing. When hearing different rhythms through the skin and the ears, people are worse at distinguishing the currently heard rhythm from a previous one, compared to the case of just ear-hearing the current rythm (Huang et al., 2012). Thus, the skin is an important organ for music listening. You cannot just ignore it.

All I do when putting in ear plugs in the night club is that I give my skin a slight advantage. And this advantage makes the music more intimate. Think about it, the skin is an organ which usually only reacts to objects which are extremely close. Compare this to our ears and eyes which react to objects far away. Seeing and ear-hearing a band is something we do at a distance. Skin-hearing a band creates an illusory proximity, as if the music was right there on your skin.


Picture by By Darshan08 (CC BY-SA 3.0) via wikimedia commons

I believe that this illusory proximity through skin-hearing is a major motivation behind the loudness one experiences in clubs and at concerts. Ear plugs are great for your intimate full-body experience of the music. The loudness of the music is not meant for ears. The proof of this seemingly nonsensical statement lies in the statistics of hearing loss. About half the people exposed to loud music during work have some hearing loss. This includes the musicians themselves, whether classical or rock/pop. And the audience is not immune either. The majority of rock concert attendees experience temporary auditory problems such as tinnitus or being hard of hearing (Zhao et al., 2010).

Clubbing and pop/rock concert music is simply too loud for unprotected ears. It is meant for the skin. Give your skin an advantage and protect your hearing with a simple, cheap, handy device: ear plugs.

— — —

Huang J, Gamble D, Sarnlertsophon K, Wang X, & Hsiao S (2013). Integration of auditory and tactile inputs in musical meter perception. Advances in experimental medicine and biology, 787, 453-61 PMID: 23716252

Russo FA, Ammirante P, & Fels DI (2012). Vibrotactile discrimination of musical timbre. Journal of experimental psychology. Human perception and performance, 38 (4), 822-6 PMID: 22708743

Zhao F, Manchaiah VK, French D, & Price SM (2010). Music exposure and hearing disorders: an overview. International journal of audiology, 49 (1), 54-64 PMID: 20001447

Why does music training increase intelligence?

We know that music training causes intelligence to increase, but why? In this post I 1) propose a new theory, and 2) falsify it immediately. Given that this particular combination of activities is unpublishable in any academic journal, I invite you to read the whole story here (in under 500 words).

1) Proposing the ISAML

Incredible but true, music lessons improve the one thing that determines why people who are good on one task tend to be better on another task as well: IQ (Schellenberg, 2004; Kaviani et al., 2013; see coverage in previous blog post). Curiously, I have never seen an explanation for why music training would benefit intelligence.

I propose the Improved Sustained Attention through Music Lessons hypothesis (ISAML). The ISAML hypothesis claims that all tasks related to intelligence are dependent to some degree on people attending to them continuously. This ability is called sustained attention. A lapse of attention, caused by insufficient sustained attention, leads to suboptimal answers on IQ tests. Given that music is related to the structuring of attention (Boltz & Jones, 1989) and removes attentional ‘gaps’ (Olivers & Nieuwenhuis, 2005; see coverage in previous blog post), music training might help in attentional control and, thus, in increasing sustained attention. This in turn might have a positive impact on intelligence, see boxes and arrows in Figure 1.


Figure 1. The Improved Sustained Attention through Music Lessons hypothesis (ISAML) in a nutshell. Arrows represent positive associations.

The ISAML does not predict that intelligence is the same as sustained attention. Instead, it predicts that:

a) music training increases sustained attention

b) sustained attention is associated with intelligence

c) music training increases intelligence

2) Evaluating the ISAML

Prediction c is already supported, see above. Does anyone know something about prediction b? Here, I shall evaluate prediction a: does music training increase sustained attention? So far, the evidence looks inconclusive (Carey et al., 2015). Therefore, I will turn to a data set of my own which I gathered in a project together with Suzanne R. Jongman (Kunert & Jongman, in press).

We used a standard test of sustained attention: the digit discrimination test (Jongman et al., 2015). Participants had the mind-boggingly boring task of clicking a button every time they saw a zero while watching one single digit after another on the screen for ten minutes. A low sustained attention ability is thought to be reflected by worse performance (higher reaction time to the digit zero) at the end of the testing session compared to the beginning, or by overall high reaction times.

Unfortunately for the ISAML, it turns out that there is absolutely no relation between musical training and sustained attention. As you can see in Figure 2A, the reaction time (logged) decrement between the first and last half of reactions to zeroes is not related to musical training years [Pearson r = .03, N = 362, p = .61, 95% CI = [-.076; .129], JZS BF01 with default prior = 7.59; Spearman rho = .05]. Same for mean reaction time (logged), see Figure 2B [Pearson r = .02, N = 362, p = .74, 95% CI = [-0.861; 0.120], JZS BF01 = 8.181; Spearman rho = 0.03].


Figure 2. The correlation between two different measures of sustained attention (vertical axes) and musical training (horizontal axes) in a sample of 362 participants. High values on vertical axes represent low sustained attention, i.e. the ISAML predicts a negative correlation coefficient. Neither correlation is statistically significant. Light grey robust regression lines show an iterated least squares regression which reduces the influence of unusual data points.

3) Conclusion

Why on earth is musical training related to IQ increases? I have no idea. The ISAML is not a good account for the intelligence boost provided by music lessons.

— — —

Carey, D., Rosen, S., Krishnan, S., Pearce, M., Shepherd, A., Aydelott, J., & Dick, F. (2015). Generality and specificity in the effects of musical expertise on perception and cognition Cognition, 137, 81-105 DOI: 10.1016/j.cognition.2014.12.005

Jongman, S., Meyer, A., & Roelofs, A. (2015). The Role of Sustained Attention in the Production of Conjoined Noun Phrases: An Individual Differences Study PLOS ONE, 10 (9) DOI: 10.1371/journal.pone.0137557

Jones, M., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96 (3), 459-491 DOI: 10.1037//0033-295X.96.3.459

Kaviani, H., Mirbaha, H., Pournaseh, M., & Sagan, O. (2013). Can music lessons increase the performance of preschool children in IQ tests? Cognitive Processing, 15 (1), 77-84 DOI: 10.1007/s10339-013-0574-0

Kunert R, & Jongman SR (2017). Entrainment to an auditory signal: Is attention involved? Journal of experimental psychology. General, 146 (1), 77-88 PMID: 28054814

Olivers, C., & Nieuwenhuis, S. (2005). The Beneficial Effect of Concurrent Task-Irrelevant Mental Activity on Temporal Attention Psychological Science, 16 (4), 265-269 DOI: 10.1111/j.0956-7976.2005.01526.x

Glenn Schellenberg, E. (2004). Music Lessons Enhance IQ Psychological Science, 15 (8), 511-514 DOI: 10.1111/j.0956-7976.2004.00711.x

— — —

The curious effect of a musical rhythm on us

Do you know the feeling of a musical piece moving you? What is this feeling? One common answer by psychological researchers is that what you feel is your attention moving in sync with the music. In a new paper I show that this explanation is mistaken.

Watch the start of the following video and observe carefully what is happening in the first minute or so (you may stop it after that).

Noticed something? Nearly everyone in the audience moved to the rhythm, clapping, moving the head etc. And you? Did you move? I guess not. You probably looked carefully at what people were doing instead. Your reaction illustrates nicely how musical rhythms affect people according to psychological researchers. One very influential theory claims that your attention moves up and down in sync with the rhythm. It treats the rhythm like you treated it. It simply ignores the fact that most people love moving to the rhythm.

The theory: a rhythm moves your attention

Sometimes we have gaps of attention. Sometimes we manage to concentrate really well for a brief moment. A very influential theory, which has been supported in various experiments, claims that these fluctuations in attention are synced to the rhythm when hearing music. Attention is up at rhythmically salient moments, e.g., the first beat in each bar. And attention is down during rhythmically unimportant moments, e.g., off-beat moments.

This makes intuitive sense. Important tones, e.g., those determining the harmonic key of a music piece, tend to occur at rhythmically salient moments. Looking at language rhythm reveals a similar picture. Stressed syllables are important for understanding language and signal moments of rhythmic salience. It makes sense to attend well during moments which include important information.

The test: faster decisions and better learning?

I, together with Suzanne Jongman, asked whether attention really is up at rhythmically salient moments. If so, people should make decisions faster when a background rhythm has a moment of rhythmic importance. As if people briefly concentrated better at that moment. This is indeed what we found. People are faster at judging whether a few letters on the screen are a real word or not, if the letters are shown near a salient moment of a background rhythm, compared to another moment.

However, we went further. People should also learn new words better if they are shown near a rhythmically salient moment. This turned out not to be the case. Whether people have to memorise a new word at a moment when their attention is allegedly up or down (according to a background rhythm) does not matter. Learning is just as good.

What is more, even those people who react really strongly to the background rhythm in terms of speeding up a decision at a rhythmically salient moment (red square in Figure below), even those people do not learn new words better at the same time as they speed up.

It’s as if the speed-up of decisions is unrelated to the learning of new words. That’s weird because both tasks are known to be affected by attention. This makes us doubt that a rhythm affects attention. What could it affect instead?


Figure 1. Every dot is one of 60 participants. How much a background rhythm sped up responses is shown horizontally. How much the same rhythm, at the same time, facilitated pseudoword memorisation is shown on the vertical axis. The red square singles out the people who were most affected by the rhythm in terms of their decision speed. Notice that, at the same time, their learning is unaffected by the rhythm.

The conclusion: a rhythm does not move your attention, it moves your muscles

To our own surprise, a musical rhythm appears not to affect how your attention moves up and down, when your attentional lapses happen, or when you can concentrate well. Instead, it simply appears to affect how fast you can press a button, e.g., when indicating a decision whether a few letters form a word or not.

Thinking back to the video at the start, I guess this just means that people love moving to the rhythm because the urge to do so is a direct consequence of understanding a rhythm. Somewhere in the auditory and motor parts of the brain, rhythm processing happens. However, this has nothing to do with attention. This is why learning a new word shown on the screen – a task without an auditory or motor component – is not affected by a background rhythm.

The paper: the high point of my career

You may read all of this yourself in the paper (here). I will have to admit that in many ways this paper is how I like to see science done and, so, I will shamelessly tell you of its merits. The paper is not too long (7,500 words) but includes no less than 4 experiments with no less than 60 participants each. Each experiment tests the research question individually. However, the experiments build on each other in such a way that their combination makes the overall paper stronger than any experiment individually ever could.

In terms of analyses, we put in everything we could think of. All analyses are Bayesian (subjective Bayes factor) and frequentist (p-values). We report hypothesis testing analyses (Bayes factor, p-values) and parameter estimation analyses (effect sizes, Confidence intervals, Credible intervals). If you can think of yet another analysis, go for it. We publish the raw data and analysis code alongside the article.

The most important reason why this paper represents my favoured approach to science, though, is because it actually tests a theory. A theory I and my co-author truly believed in. A theory with a more than 30-year history. With a varied supporting literature. With a computational model implementation. With more than 800 citations for two key papers. With, in short, everything you could wish to see in a good theory.

And we falsified it! Instead of thinking of the learning task as ‘insensitive’ or as ‘a failed experiment’, we dug deeper and couldn’t help but concluding that the attention theory of rhythm perception is probably wrong. We actually learned something from our data!

PS: no-one is perfect and neither is this paper. I wish we had pre-registered at least one of the experiments. I also wish the paper was open access (see a free copy here). There is room for improvement, as always.

— — —
Kunert R, & Jongman SR (2017). Entrainment to an auditory signal: Is attention involved? Journal of experimental psychology. General, 146 (1), 77-88 PMID: 28054814

How to test for music skills

In a new article I evaluate a recently developed test for music listening skills. To my great surprise the test behaves very well. This could open the path to better understand the psychology underlying music listening. Why am I surprised?

I got my first taste of how difficult it is to replicate published scientific results during my very first empirical study as an undergraduate (eventually published as Kunert & Scheepers, 2014). Back then, I used a 25 minute long dyslexia screening test to distinguish dyslexic participants from non-dyslexic participants (the Lucid Adult Dyslexia Screener). Even though previous studies had suggested an excellent sensitivity (identifying actually dyslexic readers as dyslexic) of 90% and a moderate to excellent specificity (identifying actually non-dylexic readers as non-dyslexic) of 66% – 91% (Singleton et al., 2009; Nichols et al., 2009), my own values were worse at 61% sensitivity and 65% specificity. In other words, the dyslexia test only flagged someone with an official dyslexia diagnosis in 11/18 cases and only categorised someone without known reading problems as non-dyslexic in 13/20 cases. The dyslexia screener didn’t perform exactly as suggested by the published literature and I have been suspicious of ability tests every since.

Five years later I acquired data to look at how music can influence language processing (Kunert et al., 2016) and added a newly proposed music abilitily measure called PROMS (Law & Zentner, 2012) to the experimental sessions to see how bad it is. I really thought I would see the music listening ability scores derived from the PROMS to be conflated with things which on the face of it have little to do with music (digit span, i.e. the ability to repeat increasingly longer digit sequences), because previous music ability tests had that problem. Similarly, I expected people with better music training to not have that much better PROMS scores. In other words, I expected the PROMS to perform worse than suggested by the people who developed the test, in line with my negative experience with the dylexia screener.

It then came as a surprise to see that PROMS scores were hardly associated with the ability to repeat increasingly longer digit sequences (either in the same order, i.e. forward digit span, or in reverse order, i.e. backward digit span), see Figure 1A and 1B. This makes the PROMS scores surprisingly robust against variation in working memory, as you would expect from a good music ability test.


Figure 1. How the brief PROMS (vertical axis) correlates with various validity measures (horizontal axis). Each dot is one participant. Lines are best fit lines with equal weights for each participant (dark) or downweighting unusual participants (light). Inserted correlation values reflect dark line (Pearson r) or a rank-order equivalent of it which is robust to outliers (Spearman rho). Correlation values range from -1 to +1.

The second surprise came when musical training was actually associated with better music skill scores, as one would expect for a good test of music skills, see Figures 1C, 1D, 1E, and 1H. To top it of, the PROMS score was also correlated with the music task performance in the experiment looking at how language influences music processing. This association between the PROMS and musical task accuracy was visible in two independent samples, see Figures 1F and 1G, which is truly surprising because the music task targets harmonic music perception which is not directly tested by the PROMS.

To conclude, I can honestly recommend the PROMS to music researchers. To my surprise it is a good test which could truly tell us something about where music skills actually come from. I’m glad that this time I have been proven wrong regarding my suspicions about ability tests.

— — —

Kunert R, & Scheepers C (2014). Speed and accuracy of dyslexic versus typical word recognition: an eye-movement investigation. Frontiers in psychology, 5 PMID: 25346708

Kunert R, Willems RM, & Hagoort P (2016). Language influences music harmony perception: effects of shared syntactic integration resources beyond attention. Royal Society open science, 3 (2) PMID: 26998339

Kunert R, Willems RM, & Hagoort P (2016). An Independent Psychometric Evaluation of the PROMS Measure of Music Perception Skills. PloS one, 11 (7) PMID: 27398805

Law LN, & Zentner M (2012). Assessing musical abilities objectively: construction and validation of the profile of music perception skills. PloS one, 7 (12) PMID: 23285071

Nichols SA, McLeod JS, Holder RL, & McLeod HS (2009). Screening for dyslexia, dyspraxia and Meares-Irlen syndrome in higher education. Dyslexia, 15 (1), 42-60 PMID: 19089876

Singleton, C., Horne, J., & Simmons, F. (2009). Computerised screening for dyslexia in adults Journal of Research in Reading, 32 (1), 137-152 DOI: 10.1111/j.1467-9817.2008.01386.x
— — —

How language changes the way you hear music

In a new paper I, together with Roel Willems and Peter Hagoort, show that music and language are tightly coupled in the brain. Get the gist in a 180 second youtube clip and then try out what my participants did.

The task my participants had to do might sound very abstract to you, so let me make it concrete. Listen to these two music pieces and tell me which one sounds ‘finished’:

I bet you thought the second one ended a bit in an odd way. How do you know? You use your implicit knowledge of harmonic relations in Western music for such a ‘finished judgement’. All we did in the paper was to see whether an aspect of language grammar (syntax) can influence your ability to hear these harmonic relations, as revealed by ‘finished judgements’. The music pieces we used for this sounded very similar to what you just heard:

It turns out that reading syntactically difficult sentences while hearing the music reduced the feeling that music pieces like this did actually end well. This indicated that processing language syntax draws on brain resources which are also responsible for music harmony.

Difficult syntax: The surgeon consoled the man and the woman put her hand on his forehead.

Easy syntax: The surgeon consoled the man and the woman because the operation had not been successful.

Curiously, sentences with a difficult meaning had no influence on the ‘finished judgements’.

Difficult meaning: The programmer let his mouse run around on the table after he had fed it.

Easy meaning: The programmer let his field mouse run around on the table after he had fed it.

Because only language syntax influenced ‘finished judgements’, we believe that music and language share a common syntax processor of some kind. This conclusion is in line with a number of other studies which I blogged about before.

What this paper adds is that we rule out an attentional link between music and language as the source of the effect. In other words, difficult syntax doesn’t simply distract you and thereby disables your music hearing. Its influence is based on a common syntax processor instead.

In the end, I tested 278 participants across 3 pre-tests, 2 experiments, and 1 post-test. Judge for yourself whether it was worth it by reading the freely available paper here.

— — —

Kunert R, & Slevc LR (2015). A Commentary on: “Neural overlap in processing music and speech”. Frontiers in human neuroscience, 9 PMID: 26089792

Kunert, R., Willems, R., & Hagoort, P. (2016). Language influences music harmony perception: effects of shared syntactic integration resources beyond attention Royal Society Open Science, 3 (2) DOI: 10.1098/rsos.150685

Broca’s area processes both music and language at the same time

When you read a book and listen to music, the brain doesn’t keep these two tasks nicely separated. In a new article just out, I show that there is a brain area which is busy with both tasks at the same time (Kunert et al., 2015). This brain area might tell us a lot about what music and language share.


The brain area which you see highlighted in red on this picture is called Broca’s area. Since the 19th century, many people believe it to be ‘the language production part of the brain’. However, a more modern theory proposes that this area is responsible for combining elements (e.g., words) into coherent wholes (e.g., sentences), a task which needs to be solved to understand and produce language (Hagoort, 2013). In my most recent publication, I found evidence that at the same time as combining words into sentences, this area also combines tones into melodies (Kunert et al., 2015).

What did I do with my participants in the MRI scanner?

Take for example the sentence The athlete that noticed the mistresses looked out of the window. Who did the noticing? Was it the mistresses who noticed the athlete or the athlete who noticed the mistresses? In other words, how does noticed combine with the mistresses and the athlete? There is a second version of this sentence which uses the same words in a different way: The athlete that the mistresses noticed looked out of the window. If you are completely confused now, I have achieved my aim of giving you a feeling for what a complicated task language is. Combining words is generally not easy (first version of the sentence) and sometimes really hard (second version of the sentence).

Listening to music can be thought of in similar ways. You have to combine tones or chords in order to hear actual music rather than just a random collection of sounds. It turns out that this is also generally not easy and sometimes really hard. Check out the following two little melodies. The text is just the first example sentence above, translated into Dutch (the fMRI study was carried out in The Netherlands).

If these examples don’t work, see more examples on my personal website here.

Did you notice the somewhat odd tone in the middle of the second example? Some people call this a sour note. The idea is that it is more difficult to combine such a sour note with the other tones in the melody, compared to a more expected note.

So, now we have all the ingedients to compare the combination of words into a sentence (with an easy and a difficult kind of combination) and tones in a melody (with an easy and a difficult kind of combination). My participants heard over 100 examples like the ones above. The experiment was done in an fMRI scanner and we looked at the brain area highlighted in red above: Broca’s area (under your left temple).

What did I find in the brain data?

The height of the bars represents the difference in brain activity signal between the easy and difficult versions of the sentences. As you can see, the bars are generally above zero, i.e. this brain area displays more activity for more difficult sentences (not a significant main effect in this analysis actually). I show three bars because the sentences were sung in three different music versions: easy (‘in-key’), hard (‘out-of-key’), or with an unexpected loud note (‘auditory anomaly’). As you can see the easy version of the melody (left bar) or the one with the unexpected loud note (right bar) hardly lead to an activity difference between easy and difficult sentences. It is the difficult version (middle bar) which does. In other words: when this brain area is trying to make a difficult combination of tones, it suddenly has great trouble with the combination of words in a sentence.

What does it all mean?

This indicates that Broca’s area uses the same resources for music and language. If you overwhelm this area with a difficult music task, there are less resources available for the language task. In a previous blog post, I have argued that behavioural experiments have shown a similar picture (Kunert & Slevc, 2015). This experiment shows that the music-language interactions we see in people’s behaviour might stem from the activity in this brain area.

So, this fMRI study contributes a tiny piece to the puzzle of how the brain deals with the many tasks it has to deal with. Instead of keeping everything nice and separated in different corners of the head, similar tasks appear to get bundled in specialized brain areas. Broca’s area is an interesting case. It is associated with combining a structured series of elements into a coherent whole. This is done across domains like music, language, and (who knows) beyond.

[Update 13/11/2015: added link to personal website.]

— — —
Hagoort P (2013). MUC (Memory, Unification, Control) and beyond. Frontiers in psychology, 4 PMID: 23874313

Kunert R, & Slevc LR (2015). A Commentary on: “Neural overlap in processing music and speech”. Frontiers in human neuroscience, 9 PMID: 26089792

Kunert R, Willems RM, Casasanto D, Patel AD, & Hagoort P (2015). Music and Language Syntax Interact in Broca’s Area: An fMRI Study. PloS one, 10 (11) PMID: 26536026

— — —

DISCLAIMER: The views expressed in this blog post are not necessarily shared by my co-authors Roel Willems, Daniel Casasan/to, Ani Patel, and Peter Hagoort.

Do music and language share brain resources?

When you listen to some music and when you read a book, does your brain use the same resources? This question goes to the heart of how the brain is organised – does it make a difference between cognitive domains like music and language? In a new commentary I highlight a successful approach which helps to answer this question.

On some isolated island in academia, the tree of knowledge has the form of a brain.

How do we read? What is the brain doing in this picture?

When reading the following sentence, check carefully when you are surprised at what you are reading:

After | the trial | the attorney | advised | the defendant | was | likely | to commit | more crimes.

I bet it was on the segment was. You probably thought that the defendant was advised, rather than that someone else was advised about the defendant. Once you read the word was you need to reinterpret what you have just read. In 2009 Bob Slevc and colleagues found out that background music can change your reading of this kind of sentences. If you hear a chord which is harmonically unexpected, you have even more trouble with the reinterpretation of the sentence on reading was.

Why does music influence language?

Why would an unexpected chord be problematic for reading surprising sentences? The most straight-forward explanation is that unexpected chords are odd. So they draw your attention. To test this simple explanation, Slevc tried out an unexpected instrument playing the chord in a harmonically expected way. No effect on reading. Apparently, not just any odd chord changes your reading. The musical oddity has to stem from the harmony of the chord. Why this is the case, is a matter of debate between scientists. What this experiment makes clear though, is that music can influence language via shared resources which have something to do with harmony processing.

Why ignore the fact that music influences language?

None of this was mention in a recent review by Isabelle Peretz and colleagues on this topic. They looked at where in the brain music and language show activations, as revealed in MRI brain scanners. This is just one way to find out whether music and language share brain resources. They concluded that ‘the question of overlap between music and speech processing must still be considered as an open question’. Peretz call for ‘converging evidence from several methodologies’ but fail to mention the evidence from non-MRI methodologies.1

Sure one has to focus on something, but it annoys me that people tend focus on methods (especially fancy expensive methods like MRI scanners), rather than answers (especially answers from elegant but cheap research into human behaviour like reading). So I decided to write a commentary together with Bob Slevc. We list no less than ten studies which used a similar approach to the one outlined above. Why ignore these results?

If only Peretz and colleagues had truly looked at ‘converging evidence from several methodologies’. They would have asked themselves why music sometimes influences language and why it sometimes does not. The debate is in full swing and already beyond the previous question of whether music and language share brain resources. Instead, researchers ask what kind of resources are shared.

So, yes, music and language appear to share some brain resources. Perhaps this is not easily visible in MRI brain scanners. Looking at how people read with chord sequences played in the background is how one can show this.

— — —
Kunert, R., & Slevc, L.R. (2015). A commentary on “Neural overlap in processing music and speech” (Peretz et al., 2015) Frontiers in Human Neuroscience : doi: 10.3389/fnhum.2015.00330

Peretz I, Vuvan D, Lagrois MÉ, & Armony JL (2015). Neural overlap in processing music and speech. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 370 (1664) PMID: 25646513

Slevc LR, Rosenberg JC, & Patel AD (2009). Making psycholinguistics musical: self-paced reading time evidence for shared processing of linguistic and musical syntax. Psychonomic bulletin & review, 16 (2), 374-81 PMID: 19293110
— — —

1 Except for one ECoG study.

DISCLAIMER: The views expressed in this blog post are not necessarily shared by Bob Slevc.

The real reason why new pop music is so incredibly bad

You have probably heard that Pink Floyd recently published their new album Endless River. Will this bring back the wonderful world of good music after the endless awfulness of the popular music scene in the last 20 years or so? Is good music, as we know it from the 60s and 70s, back for good? The reasons behind the alleged endless awfulness of pop music these days suggest otherwise. We shouldn’t be throwing stones at new music but instead at our inability to like it.

Pink Floyd 1973

When we were young we learned to appreciate Pink Floyd.

Daniel Levitin was asked at a recent music psychology conference in Toronto why old music is amazing and new music is awful. He believed that modern record companies are there to make money. In the olden days, on the other hand, they were there to make music and ready to hold on to musicians which needed time to become successful. More interestingly, he reminded the public that many modern kidz would totally disagree with the implication that modern music is awful. How can it be that new music is liked by young people if so much of it is often regarded as quite bad?

Everything changes for the better after a few repetitions

The answer to the mystery has nothing to do with flaws in modern music but instead with our brain. When adults hear new music they often hate it at first. After repeated listening they tend to find it more and more beautiful. For example, Marcia Johnson and colleagues (1985) played Korean melodies to American participants and found that hearing a new melody led to low liking ratings, a melody heard once before to higher ratings and even more exposure to higher than higher ratings. Even Korsakoff patients – who could hardly remember having heard individual melodies before – showed this effect, i.e. without them realising it they probably never forget melodies.

This so-called mere exposure effect is all that matters to me: a robust, medium-strong, generally applicable, evolutionarily plausible effect (Bornstein, 1989). You can do what you like, it applies to all sorts of stimuli. However, there is one interesting exception here. Young people do not show the mere exposure effect, no relationship between ‘repeat the stimulus’ and ‘give good feeling’ (Bornstein, 1989). As a result, adults need a lot more patience before they like a new song as much as young people do. No wonder adults are only satisfied with the songs they already know from their youth in the 60s and 70s. Probably, when looking at the music scene in 2050 the current generation will equally hate it and wish the Spice Girls back (notice the gradual rise of 90’s parties already).

I listened to it –> I like it

So, when it comes to an allegedly awful present and great past, ask yourself: how deep is your love for the old music itself rather than its repeated listening? Listen repeatedly to any of a million love songs and you will end up appreciating it. Personally, I give new music a chance and sometimes it manages to relight my fire. Concerning Endless River, if it’s not love at first sight, do not worry. The new Pink Floyd album sure is good (depending on how many times you listen to it).

— — —
Bornstein, R. (1989). Exposure and affect: Overview and meta-analysis of research, 1968-1987. Psychological Bulletin, 106 (2), 265-289 DOI: 10.1037/0033-2909.106.2.265

Johnson MK, Kim JK, & Risse G (1985). Do alcoholic Korsakoff’s syndrome patients acquire affective reactions? Journal of experimental psychology. Learning, memory, and cognition, 11 (1), 22-36 PMID: 3156951
— — —

Figure: By PinkFloyd1973.jpg: TimDuncan derivative work: Mr. Frank (PinkFloyd1973.jpg) [CC-BY-3.0 (, via Wikimedia Commons

— — —

PS: Yes, I did hide 29 Take That song titles in this blog post. Be careful, you might like 90’s pop music a little bit more due to this exposure.






The 10,000-Hour rule is nonsense

Have you heard of Malcom Gladwell’s 10,000-hour rule? The key to success in any field is practice, and not just a little. A new publication in the journal Psychological Science had a good look at all the evidence and concludes that this rule is nonsense. No Einstein in you, I am afraid.

Albert Einstein, by Doris Ulmann.jpg

Did he just practice a lot?

The authors of the new publication wanted to look at all major areas of expertise where the relationship between practice and performance had been investigated: music, games, sports, professions, and education. They accumulated all the 88 scientific articles that are available at this point and performed one big analysis on the accumulated data of 11,135 participants. A meta-analysis with a huge sample.

The take-home number is 12%. The amount of practice that you do only explains 12% of your performance in a given task. From the 10,000-Hour rule I expected at least 50%. And this low number of 12% is not due to fishy methods in some low-quality articles that were included. Actually, the better the method to assess the amount of practice the lower the apparent effect of practice. The same goes for the method to assess performance on the practiced task.

However, one should differentiate between different kinds of activities. Practice can have a bigger effect. For example, if the context in which the task is performed is very stable (e.g., running) 24% of performance is explained by practice. Unstable contexts (e.g., handling an aviation emergency) push this down to 4% . The area of expertise also made a difference:

  • games: 26%
  • music: 21%
  • sports: 18%
  • education: 4%
  • professions: 1%

In other words the 10,000-Hour rule is nonsense. Stop believing in it. Sure, practice is important. But other factors (age? intelligence? talent?) appear to play a bigger role.

Personally, I have decided not to become a chess master by practicing chess for 10,000 hours or more. I rather focus on activities that play to my strengths. Let’s hope that blogging is one of them.

Macnamara, B.N., Hambrick, D.Z., & Oswald, F.L. (2014). Deliberate Practice and Performance in Music, Games, Sports, Education, and Professions: A Meta-Analysis Psychological Science DOI: 10.1037/e633262013-474





Albert Einstein, by Doris Ulmann” by Doris Ulmann (1882 – 1934) – Library of Congress, Prints & Photographs Division, [reproduction number LC-USZC4-4940]. Licensed under Public domain via Wikimedia Commons.

Music training boosts IQ

There are more and more brain training companies popping up which promise the same deal: improved intelligence. While there are doubts about their results, another sort of brain training has existed since the beginning of humanity: music. The evidence for its effectiveness is surprisingly strong.


Music Lesson, 1936

Brain training in the 1930’s.

Over the years, researchers have noticed that people who have taken music lessons are better on a wide range of seemingly unconnected tasks. Just look at this impressive list:


Mathematics (across many different tasks; Vaughn, 2000)
Reading (understanding a written text; Corrigall & Trainor, 2011)
Simon task (quickly overcoming an easy, intuitive response in order to do a task right; Bialystok & DePape, 2009)
Digit Span (repeating a long list of random digits; Schellenberg, 2011)
Simple Reaction Time (pressing a button as soon as possible; Hughes & Franz, 2007)


None of these tasks has anything to do with music classes. What is it that makes music lessons correlate with them? It could just be the socio-economic background: the more well-off or well-educated the parents the better the education of their children, including their music education (e.g., Corrigall et al., 2013). However, one can adjust for these differences with statistical tricks and the general picture is that the family background cannot fully explain the advantage musically trained children have on all sorts of tasks (e.g., Corrigall & Trainor, 2011; Schellenberg, 2011). If not family background, then what is underlying the music children advantage?


Füssli: Liegende Nackte und Klavierspielerin

Brain training in the 18th century. I am referring to the left lady.

Another contender is a common factor making some people good on all sorts of seemingly unrelated tasks and other people bad on nearly any task. This factor is called ‘g’ or general intelligence. An indeed, people who have enjoyed a musical education score higher on intelligence tests than people who did not. This has been shown across the globe: North America (Schellenberg, 2011), Europe (Roden et al., 2013), Asia (Ho et al., 2003†). The consistency across age groups is also impressive: 6-11 year olds (Schellenberg, 2006), 9-12 year olds (Schellenberg, 2011), 16-25 year-olds (Schellenberg, 2006). So, what holds these tasks and music education together is general intelligence. But that just opens up the next question: what causes this association between general intelligence and music lessons?
Music lessons cause higher intelligence
The most exciting possibility would be if music lessons actually caused higher intelligence. In order to make such a claim one needs to take a bunch of people and randomly assign them to either music lessons or some comparable activity. This random assignment ensures that any previous differences between music and non-music children will be equally distributed across groups. Random chance assignment at the beginning of the experiment ensures that any group differences at the end must be due to the whether children took music lessons during the experiment or not. Glenn Schellenberg did exactly this experiment with over 100 six-year-olds in Toronto (2004). Over a period of one year the children who learned to play the keyboard or to sing increased their IQ by 7 points. Children who were given drama lessons instead or simply no extra-curricular activity only increased by 4 points (likely because they started school in that year). A similar study which recently came out of Iran by Kaviani and colleagues (2013) replicates this finding. After only three months of group music lessons, the six-year-old music children increased their IQ by five points while children who were not assigned to music lessons only improved by one point. Across studies music lessons boost IQ.
It is worth reiterating how impressive this effect is. It has been found across three different music teaching approaches (standard keyboard lessons, Kodály voice lessons, Orff method). It has been replicated with two different sorts of intelligence tests (Wechsler and Stanford-Binet) as well as most of their subscales. It even came up despite the cultural differences between testing countries (Canada, Iran).
The take-home message couldn’t be any clearer. Music lessons are associated with intelligence not just because clever or well-off people take music lessons. A musical education itself makes you better across many tasks generally and on IQ tests specifically. No other ‘brain training’ has such a strong evidence base. Music is the best brain training we have.


Eros and a youth

Ancient Greek brain training. I am referring to the gentleman on the right.


Bialystok E, & Depape AM (2009). Musical expertise, bilingualism, and executive functioning. Journal of experimental psychology. Human perception and performance, 35 (2), 565-74 PMID: 19331508

Corrigall KA, Schellenberg EG, & Misura NM (2013). Music training, cognition, and personality. Frontiers in psychology, 4 PMID: 23641225

Corrigall, KA, & Trainor, LJ (2011). Associations Between Length of Music Training and Reading Skills in Children Music Perception: An Interdisciplinary Journal,, 29 (2), 147-155 DOI: 10.1525/mp.2011.29.2.147

Ho YC, Cheung MC, & Chan AS (2003). Music training improves verbal but not visual memory: cross-sectional and longitudinal explorations in children. Neuropsychology, 17 (3), 439-50 PMID: 12959510

Hughes CM, & Franz EA (2007). Experience-dependent effects in unimanual and bimanual reaction time tasks in musicians. Journal of motor behavior, 39 (1), 3-8 PMID: 17251166

Kaviani H, Mirbaha H, Pournaseh M, & Sagan O (2013). Can music lessons increase the performance of preschool children in IQ tests? Cognitive processing PMID: 23793255

Roden, I, Grube, D, Bongard, S, & Kreutz, G (2013). Does music training enhance working memory performance? Findings from a quasi-experimental longitudinal study Psychology of Music DOI: 10.1177/0305735612471239

Schellenberg EG (2004). Music lessons enhance IQ. Psychological science, 15 (8), 511-4 PMID: 15270994

Schellenberg, EG (2006). Long-Term Positive Associations Between Music Lessons and IQ Journal of Educational Psychology, 98 (2), 457-468 DOI: 10.1037/0022-0663.98.2.457

Schellenberg EG (2011). Examining the association between music lessons and intelligence. British journal of psychology, 102 (3), 283-302 PMID: 21751987

Vaughn, K (2000). Music and Mathematics: Modest Support for the Oft-Claimed Relationship Journal of Aesthetic Education,, 34 (3/4), 149-166 DOI: 10.2307/3333641



† Effect only marginally significant (0.05<p<0.1)



1) By Franklin D. Roosevelt Presidential Library and Museum [Public domain], via Wikimedia Commons

2) By Johann Heinrich Füssli: Liegende Nackte und Klavierspielerin, via Wikimedia Commons

3) attributed to the Penthesilea Painter, between circa 460 and circa 450 BC, via Wikimedia Commons